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Abstract

Quadratic variation (QV) regularization is a recent
method for BW removal but cannot be used for PLI
cancellation. To overcome this limitation, an extension
of QV regularization which can simultaneously deal with
BW and PLI tracking and removal is presented. In the
proposed method, PLI and BW are respectively modeled
by a sinusoidal and a polynomial function. The difference
equation of the sinusoidal function and the p-th order
derivative of the polynomial function are then used as
constrains in the optimization problem. The proposed
approach is also implemented using Kalman filter and
smoother which is an optimal estimator in mean square
error (MSE) sense. We tested the method over data from
the PhysioNet PTB database. Simulation results confirm
the effectiveness of the approach and highlight its ability
to simultaneously track and remove the PLI and BW.

1. Introduction

Recently, Fasano and Villani have proposed an approach
to baseline wander (BW) estimation and removal for
bioelectrical signals [1,2] which is based on the notation of
quadratic variation (QV) reduction. In this approach, the
BW is estimated using a constrained convex optimization
problem where the first order derivative of the signal enters
as a constraint. They showed the effectiveness of the
QV regularization in BW removal from electrocardiogram
(ECG) and electroencephalogram (EEG) using numerical
examples. The smoothing approach defined by QV
regularization [1, 2], is to recover an unknown signal x(t)
from its observation y(t) in

y(t) = x(t) + v(t), (1)

where v(t) is an additive noise assumed to be uncorrelated
with x(t). An estimate of the signal of interest is obtained
by solving the following least-square estimation (LSE)

problem:

x̂(t) = argmin
x(t)

∫
[y(τ)− x(τ)]

2
dτ + λ

∫
[Dpx(τ)]

2
dτ

(2)
where Dpx = dp

dtpx denotes the p-th order derivative of
the signal and λ denotes the regularization factor which
is used to balance the the fidelity term (minimum mean
square error) and signal smoothness. It is notable that in
[1, 2], the first order derivative of the signal is considered
(i.e., p = 1) as constraint while Eq. (2) defines a general
smoothing approach which penalizes the p-order derivative
of the signal. In discrete-time domain, (2) can be written
as follows [3]:

x̂k = argmin
xk

L∑
j=1

[yj − xj ]
2
+ λ

L∑
j=1

[∇pxj ]
2
, (3)

where ∇xk = xk − xk−1 is the first order difference and
∇pxk = ∇(∇p−1xk) is the p-th order difference. In [3,4],
we have shown that the value of λ is related to the cutoff
frequency. The optimal solution for (3) is

x̂k = (δk + λbp,−k ∗ bp,k)
⊗

∗ yk. (4)

where ∗ and
⊗

are the convolution and deconvolution
operator, respectively and bp is defined by the following
recursion: {

b1 ≜ (+1 − 1) p = 1

bp = bp−1 ∗ b1 p > 1
(5)

The frequency response of the p-th order QV regularization
is

Gp(z) =
1

1 + λ(1− z−1)p(1− z)p
. (6)

which becomes in the Fourier domain

Gp(e
jω) =

1

1 + λ[2− 2 cosω]p
=

1

1 + λ(2 sin ω
2 )

2p
.

(7)
Therefore the value of λ is related to cutoff frequency as

λ =
1

(2 sin ωc

2 )2p
, (8)
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Figure 1. The frequency response of QV regularization
for different values of λ.

where ωc = 2πfc and fc is the cutoff frequency. The
frequency response of the first order QV regularization
for some low cutoff frequencies is plotted in Fig. 1.
The QV regularization acts as a low-pass smoothing filter.
Therefore, it can be used for BW tracking and removal
from bioelectrical signals. However, the BW is not the
only noise in measurement systems. For instance, power-
line interference (PLI) is an unavoidable interference in
biosignal measurement systems. As a limitation of QV
regularization, it cannot be used for the estimation and
removal of the PLI from bioelectrical signals. In this paper,
we propose a modification to QV regularization which
allows us to simultaneously track and remove the BW and
PLI from bioelectrical signals.

2. Method

PLI and BW are respectively modeled by a sinusoidal
and a polynomial function:

xp(t) = α cos(ω0t+ ϕ)

xb(t) =

p−1∑
i=0

βit
i

(9)

where xp(t) and xb(t) are PLI and BW, respectively, α,
ω0 and ϕ are the amplitude, frequency and phase of the
PLI and p − 1 is the order of polynomial used for BW
modeling. The second order derivative of xp is a function

of itself and the p-th order derivative of xb is zero:
d2

dt2
xp(t) = −ω2

0xp(t)

dp

dtp
xb(t) = 0

(10)

Since the above model is an approximate of the PLI and
BW, the following differential equation model can be
considered for PLI and BW tracking:

d2

dt2
xp(t) + ω2

0xp(t) = wp(t)

di

dti
xb(t) = wb(t)

y(t) = xp(t) + xb(t) + v(t)

(11)

where wp(t), wb(t) and v(t) are process and observation
noises, respectively. The discrete-time version of (11) is:

xp,k = γxp,k−1 − xp,k−2 + wp,k

xb,k = −
p∑

i=1

αixb,k−i + wb,k

yk = xp,k + xb,k + vk

(12)

where γ = 2 cos(ω0) and αi = (−1)i
(
p

i

)
. (12) can be

expressed in the following form:
d1(z)xp,k = wp,k

d2(z)xb,k = wb,k

yk = xp,k + xb,k + vk

, (13)

where z−ixk = xk−i, d1(z) = 1 − γz−1 + z−2 and
d2(z) = (1 − z−1)p. The difference equation of the
sinusoidal function and the p-th order deference of the
polynomial function are then used as constraints in the
optimization problem:

x̂p,k, x̂b,k = argmin
xp,k,xb,k

L∑
j=1

(
yj − xp,j − xb,j

)2

+

L∑
j=1

λ1

[
d1(z)xp,k

]2
+ λ2

[
d2(z)xb,k

]2
+ 2ρ

[
d1(z)xp,k

]⊺
d2(z)xb,k

(14)
where λ1 and λ2 are the regularization factors and ρ is the
auto-correlation coefficient between wp and wb. Taking
the derivative of (15) with respect to xp and xb and setting
the results to zero, we find{

x̂p = [M1M2 −N1N2]
−1 [

λ1D
TD − ρDTBn

]
y

x̂b = [M1M2 −N1N2]
−1 [

λ2B
T
nBn − ρBT

nD
]
y
,
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Figure 2. The frequency response of the proposed
smoothing filter.

where

M1 = I + λ1D
TD,

M2 = I + λ2B
T
nBn,

N1 = I + ρBT
nD,

N2 = I + ρDTBn,

D =


1 −γ 1 0 . . . 0

0 1 −γ 1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 1 −γ 1



and

Bn =


1 α1 . . . αn 0 . . . 0

0 1 α1 . . . αn
. . .

...
...

. . . . . . . . . . . . . . . 0
0 . . . 0 1 α1 . . . αn



The frequency response of the proposed smoothing filter is

ψ(z) =
X̂p(z) + X̂b(z)

Y (z)
=
M1(z) +M2(z)−N1(z)−N2(z)

M1(z)M2(z)−N1(z)N2(z)

M1(z) = 1 + λ1d1(z)d1(z
−1),

M2(z) = 1 + λ2d2(z)d2(z
−1),

N1(z) = 1 + ρd2(
1

z
)d1(z),

N2(z) = 1 + ρd1(
1

z
)d2(z)

(15)
The frequency response of the proposed smoothing filter
for fc = 0.5 Hz and fp = 50 Hz is plotted in Fig.
2. It allows the low frequencies and a narrow band-pass
frequency band to pass. When the outputs are subtracted
from the observation (x̂k = yk − x̂p,k − x̂b,k), it acts
as a simultaneous high-pass and a narrow-band notch
smoothing filter. Finally, the proposed smoothing filter can
also be implemented using a Kalman filter and a Kalman
smoother. The idea has been recently presented in [5] and
then extended in [6] for simultaneous linear time invariant
(LTI) filtering and total variation (TV) denoising. In order
to implement it, Eq. (12) can be used in the framework of
Kalman filter and smoother and the states xp and xb are
estimated through Kalman filter and smoother equations.

3. Results

We applied the proposed smoothing filter to simultaneously
estimate and remove the PLI and BW from ECG signals
from PhysioNet PTB Diagnostic ECG Database [7], which
contains 549 records from 290 subjects. Each record
consists of twelve conventional ECG leads plus the three
Frank’s ones, sampled at 1kHz with 16-bit resolution.
Figure 3 shows an example of a real ECG contaminated
with synthetic PLI and BW. The original ECG and its noisy
signal are respectively shown in Figure 3(a) and 3(b). The
result of the proposed method is shown in Figure 3(c). It
is seen that the PLI and BW are effectively removed using
the proposed method.

4. Conclusion

QV regularization is a low-pass smoothing filter which
is suited for removing baseline wander but it cannot be
used for powerline cancellation. This paper proposed an
extension of QV regularization that makes it suited for
simultaneous tracking and removal of BW and PLI. In
the proposed approach, the PLI and BW are respectively
modeled by a sinusoidal and a polynomial function. The
difference equation of the sinusoidal function and the p−1-
th order derivative of the polynomial function are then used
as constrains in the optimization problem.

Page 3



2 4 6 8 10 12 14 16 18
-2

-1

0

1

2

3 Original ECG

(a)Original ECG

2 4 6 8 10 12 14 16 18

-5

0

5

10 Noisy ECG

(b)Deluded ECG by PLI and BW

2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3
Denoised ECG

(c)Denoised ECG using the proposed approach

Figure 3. Simultaneous track and removal of PLI and BW in ECG.
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